博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
python模块基础之json,requeste,xml,configparser,logging,subprocess,shutil。
阅读量:5137 次
发布时间:2019-06-13

本文共 26298 字,大约阅读时间需要 87 分钟。

1、json模块

  json     用于【字符串】和 【python基本数据类型】 间进行转换(可用于不同语言之前转换),json.loads,将字符串转成python的基本数据类型,json.dumps将python的基本数据类型转换成字符串,用法之前和pickle相同,值得一提的是,loads的时候,如果转换之后数据内部如果有多个元素要用双引号,最外边用单引号(比如列表等),以此区分整个数据的和数据元素的一个边界,否则容易混乱。

2、requests模块简介安装

Python标准库中提供了:urllib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。

urllib发送get请求

import urllib.requestf = urllib.request.urlopen('http://www.webxml.com.cn//webservices/qqOnlineWebService.asmx/qqCheckOnline?qqCode=424662508')result = f.read().decode('utf-8')

  url发送带请求头的get

import urllib.requestreq = urllib.request.Request('http://www.example.com/')req.add_header('Referer', 'http://www.python.org/')r = urllib.request.urlopen(req)result = f.read().decode('utf-8')

  Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。

这是个三方模块,用来发送http请求,默认两种安装方法,源码安装和pip安装,本身安装pip也是依赖setuptools安装但是pycharm3.5环境默认带有pip这就省去很多事情,如果直接pip install xxx基于windows64位系统一样会出问题,具体问题和解决方法如下

源码安装,先去下载,解压,然后命令行下进入该目录对setup.py文件进行安装,执行python setup.py install 进行安装。

requests发get请求

# 1、无参数实例 import requests ret = requests.get('https://github.com/timeline.json') print(ret.url)print(ret.text)   # 2、有参数实例 import requests payload = {'key1': 'value1', 'key2': 'value2'}ret = requests.get("http://httpbin.org/get", params=payload) print(ret.url)print(ret.text)

  requests发送post请求

# 1、基本POST实例 import requests payload = {'key1': 'value1', 'key2': 'value2'}ret = requests.post("http://httpbin.org/post", data=payload) print(ret.text)  # 2、发送请求头和数据实例 import requestsimport json url = 'https://api.github.com/some/endpoint'payload = {'some': 'data'}headers = {'content-type': 'application/json'} ret = requests.post(url, data=json.dumps(payload), headers=headers) print(ret.text)print(ret.cookies)

  其他请求

requests.get(url, params=None, **kwargs)requests.post(url, data=None, json=None, **kwargs)requests.put(url, data=None, **kwargs)requests.head(url, **kwargs)requests.delete(url, **kwargs)requests.patch(url, data=None, **kwargs)requests.options(url, **kwargs) # 以上方法均是在此方法的基础上构建requests.request(method, url, **kwargs)

  更多requests模块相关的文档见:http://cn.python-requests.org/zh_CN/latest/

xml与requeste实例之检测qq是否在线

import urllibimport requestsfrom xml.etree import ElementTree as ET# 使用内置模块urllib发送HTTP请求,或者XML格式内容"""f = urllib.request.urlopen('http://www.webxml.com.cn//webservices/qqOnlineWebService.asmx/qqCheckOnline?qqCode=424662508')result = f.read().decode('utf-8')"""# 使用第三方模块requests发送HTTP请求,或者XML格式内容r = requests.get('http://www.webxml.com.cn//webservices/qqOnlineWebService.asmx/qqCheckOnline?qqCode=424662508')result = r.text# 解析XML格式内容node = ET.XML(result)# 获取内容if node.text == "Y":    print("在线")else:    print("离线") #代码没问题,但是检测并不正确,所有注册过的qq都为Y

  实例之获取列车信息

import urllibimport requestsfrom xml.etree import ElementTree as ET# 使用内置模块urllib发送HTTP请求,或者XML格式内容"""f = urllib.request.urlopen('http://www.webxml.com.cn/WebServices/TrainTimeWebService.asmx/getDetailInfoByTrainCode?TrainCode=G666&UserID=')result = f.read().decode('utf-8')"""# 使用第三方模块requests发送HTTP请求,或者XML格式内容r = requests.get('http://www.webxml.com.cn/WebServices/TrainTimeWebService.asmx/getDetailInfoByTrainCode?TrainCode=G666&UserID=')result = r.text# 解析XML格式内容root = ET.XML(result)for node in root.iter('TrainDetailInfo'):    print(node.find('TrainStation').text,node.find('StartTime').text,node.tag,node.attrib)

  注:更多接口

3、XML是实现不同语言或程序之间进行数据交换的协议,XML文件格式如下

    
2
2023
141100
5
2026
59900
69
2026
13600

 xml的解析方法,利用ElementTree.XML将字符串解析成xml对象 

 

复制代码from xml.etree import ElementTree as ET# 打开文件,读取XML内容str_xml = open('xo.xml', 'r').read()# 将字符串解析成xml特殊对象,root代指xml文件的根节点root = ET.XML(str_xml)

  利用ElementTree.parse将文件直接解析成xml对象

from xml.etree import ElementTree as ET# 直接解析xml文件tree = ET.parse("xo.xml")# 获取xml文件的根节点root = tree.getroot()

  操作xml,xml是节点嵌套节点,对此均有以下功能可以对其进行操作

class Element:    """An XML element.    This class is the reference implementation of the Element interface.    An element's length is its number of subelements.  That means if you    want to check if an element is truly empty, you should check BOTH    its length AND its text attribute.    The element tag, attribute names, and attribute values can be either    bytes or strings.    *tag* is the element name.  *attrib* is an optional dictionary containing    element attributes. *extra* are additional element attributes given as    keyword arguments.    Example form:        
text
...
tail """ 当前节点的标签名 tag = None """The element's name.""" 当前节点的属性 attrib = None """Dictionary of the element's attributes.""" 当前节点的内容 text = None """ Text before first subelement. This is either a string or the value None. Note that if there is no text, this attribute may be either None or the empty string, depending on the parser. """ tail = None """ Text after this element's end tag, but before the next sibling element's start tag. This is either a string or the value None. Note that if there was no text, this attribute may be either None or an empty string, depending on the parser. """ def __init__(self, tag, attrib={}, **extra): if not isinstance(attrib, dict): raise TypeError("attrib must be dict, not %s" % ( attrib.__class__.__name__,)) attrib = attrib.copy() attrib.update(extra) self.tag = tag self.attrib = attrib self._children = [] def __repr__(self): return "<%s %r at %#x>" % (self.__class__.__name__, self.tag, id(self)) def makeelement(self, tag, attrib): 创建一个新节点 """Create a new element with the same type. *tag* is a string containing the element name. *attrib* is a dictionary containing the element attributes. Do not call this method, use the SubElement factory function instead. """ return self.__class__(tag, attrib) def copy(self): """Return copy of current element. This creates a shallow copy. Subelements will be shared with the original tree. """ elem = self.makeelement(self.tag, self.attrib) elem.text = self.text elem.tail = self.tail elem[:] = self return elem def __len__(self): return len(self._children) def __bool__(self): warnings.warn( "The behavior of this method will change in future versions. " "Use specific 'len(elem)' or 'elem is not None' test instead.", FutureWarning, stacklevel=2 ) return len(self._children) != 0 # emulate old behaviour, for now def __getitem__(self, index): return self._children[index] def __setitem__(self, index, element): # if isinstance(index, slice): # for elt in element: # assert iselement(elt) # else: # assert iselement(element) self._children[index] = element def __delitem__(self, index): del self._children[index] def append(self, subelement): 为当前节点追加一个子节点 """Add *subelement* to the end of this element. The new element will appear in document order after the last existing subelement (or directly after the text, if it's the first subelement), but before the end tag for this element. """ self._assert_is_element(subelement) self._children.append(subelement) def extend(self, elements): 为当前节点扩展 n 个子节点 """Append subelements from a sequence. *elements* is a sequence with zero or more elements. """ for element in elements: self._assert_is_element(element) self._children.extend(elements) def insert(self, index, subelement): 在当前节点的子节点中插入某个节点,即:为当前节点创建子节点,然后插入指定位置 """Insert *subelement* at position *index*.""" self._assert_is_element(subelement) self._children.insert(index, subelement) def _assert_is_element(self, e): # Need to refer to the actual Python implementation, not the # shadowing C implementation. if not isinstance(e, _Element_Py): raise TypeError('expected an Element, not %s' % type(e).__name__) def remove(self, subelement): 在当前节点在子节点中删除某个节点 """Remove matching subelement. Unlike the find methods, this method compares elements based on identity, NOT ON tag value or contents. To remove subelements by other means, the easiest way is to use a list comprehension to select what elements to keep, and then use slice assignment to update the parent element. ValueError is raised if a matching element could not be found. """ # assert iselement(element) self._children.remove(subelement) def getchildren(self): 获取所有的子节点(废弃) """(Deprecated) Return all subelements. Elements are returned in document order. """ warnings.warn( "This method will be removed in future versions. " "Use 'list(elem)' or iteration over elem instead.", DeprecationWarning, stacklevel=2 ) return self._children def find(self, path, namespaces=None): 获取第一个寻找到的子节点 """Find first matching element by tag name or path. *path* is a string having either an element tag or an XPath, *namespaces* is an optional mapping from namespace prefix to full name. Return the first matching element, or None if no element was found. """ return ElementPath.find(self, path, namespaces) def findtext(self, path, default=None, namespaces=None): 获取第一个寻找到的子节点的内容 """Find text for first matching element by tag name or path. *path* is a string having either an element tag or an XPath, *default* is the value to return if the element was not found, *namespaces* is an optional mapping from namespace prefix to full name. Return text content of first matching element, or default value if none was found. Note that if an element is found having no text content, the empty string is returned. """ return ElementPath.findtext(self, path, default, namespaces) def findall(self, path, namespaces=None): 获取所有的子节点 """Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath, *namespaces* is an optional mapping from namespace prefix to full name. Returns list containing all matching elements in document order. """ return ElementPath.findall(self, path, namespaces) def iterfind(self, path, namespaces=None): 获取所有指定的节点,并创建一个迭代器(可以被for循环) """Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath, *namespaces* is an optional mapping from namespace prefix to full name. Return an iterable yielding all matching elements in document order. """ return ElementPath.iterfind(self, path, namespaces) def clear(self): 清空节点 """Reset element. This function removes all subelements, clears all attributes, and sets the text and tail attributes to None. """ self.attrib.clear() self._children = [] self.text = self.tail = None def get(self, key, default=None): 获取当前节点的属性值 """Get element attribute. Equivalent to attrib.get, but some implementations may handle this a bit more efficiently. *key* is what attribute to look for, and *default* is what to return if the attribute was not found. Returns a string containing the attribute value, or the default if attribute was not found. """ return self.attrib.get(key, default) def set(self, key, value): 为当前节点设置属性值 """Set element attribute. Equivalent to attrib[key] = value, but some implementations may handle this a bit more efficiently. *key* is what attribute to set, and *value* is the attribute value to set it to. """ self.attrib[key] = value def keys(self): 获取当前节点的所有属性的 key """Get list of attribute names. Names are returned in an arbitrary order, just like an ordinary Python dict. Equivalent to attrib.keys() """ return self.attrib.keys() def items(self): 获取当前节点的所有属性值,每个属性都是一个键值对 """Get element attributes as a sequence. The attributes are returned in arbitrary order. Equivalent to attrib.items(). Return a list of (name, value) tuples. """ return self.attrib.items() def iter(self, tag=None): 在当前节点的子孙中根据节点名称寻找所有指定的节点,并返回一个迭代器(可以被for循环)。 """Create tree iterator. The iterator loops over the element and all subelements in document order, returning all elements with a matching tag. If the tree structure is modified during iteration, new or removed elements may or may not be included. To get a stable set, use the list() function on the iterator, and loop over the resulting list. *tag* is what tags to look for (default is to return all elements) Return an iterator containing all the matching elements. """ if tag == "*": tag = None if tag is None or self.tag == tag: yield self for e in self._children: yield from e.iter(tag) # compatibility def getiterator(self, tag=None): # Change for a DeprecationWarning in 1.4 warnings.warn( "This method will be removed in future versions. " "Use 'elem.iter()' or 'list(elem.iter())' instead.", PendingDeprecationWarning, stacklevel=2 ) return list(self.iter(tag)) def itertext(self): 在当前节点的子孙中根据节点名称寻找所有指定的节点的内容,并返回一个迭代器(可以被for循环)。 """Create text iterator. The iterator loops over the element and all subelements in document order, returning all inner text. """ tag = self.tag if not isinstance(tag, str) and tag is not None: return if self.text: yield self.text for e in self: yield from e.itertext() if e.tail: yield e.tail

  由于所有节点都具有以上节点,在之前我们又都得到了xml的根节点,因此我们可以进行一些操作,比如遍历xml文档的所有内容

from xml.etree import ElementTree as ET############ 解析方式一 ############"""# 打开文件,读取XML内容str_xml = open('xo.xml', 'r').read()# 将字符串解析成xml特殊对象,root代指xml文件的根节点root = ET.XML(str_xml)"""############ 解析方式二 ############# 直接解析xml文件tree = ET.parse("xo.xml")# 获取xml文件的根节点root = tree.getroot()### 操作# 顶层标签print(root.tag)# 遍历XML文档的第二层for child in root:    # 第二层节点的标签名称和标签属性    print(child.tag, child.attrib)    # 遍历XML文档的第三层    for i in child:        # 第二层节点的标签名称和内容        print(i.tag,i.text)

  遍历指定节点

from xml.etree import ElementTree as ET############ 解析方式一 ############"""# 打开文件,读取XML内容str_xml = open('xo.xml', 'r').read()# 将字符串解析成xml特殊对象,root代指xml文件的根节点root = ET.XML(str_xml)"""############ 解析方式二 ############# 直接解析xml文件tree = ET.parse("xo.xml")# 获取xml文件的根节点root = tree.getroot()### 操作# 顶层标签print(root.tag)# 遍历XML中所有的year节点for node in root.iter('year'):    # 节点的标签名称和内容    print(node.tag, node.text)

  修改节点,由于修改的节点时,均是在内存中进行,其不会影响文件中的内容。所以,如果想要修改,则需要重新将内存中的内容写到文件。

from xml.etree import ElementTree as ET############ 解析方式一 ############# 打开文件,读取XML内容str_xml = open('xo.xml', 'r').read()# 将字符串解析成xml特殊对象,root代指xml文件的根节点root = ET.XML(str_xml)############ 操作 ############# 顶层标签print(root.tag)# 循环所有的year节点for node in root.iter('year'):    # 将year节点中的内容自增一    new_year = int(node.text) + 1    node.text = str(new_year)    # 设置属性    node.set('name', 'alex')    node.set('age', '18')    # 删除属性    del node.attrib['name']############ 保存文件 ############tree = ET.ElementTree(root)tree.write("newnew.xml", encoding='utf-8')############ 解析方式二 ############# 直接解析xml文件tree = ET.parse("xo.xml")# 获取xml文件的根节点root = tree.getroot()############ 操作 ############# 顶层标签print(root.tag)# 循环所有的year节点for node in root.iter('year'):    # 将year节点中的内容自增一    new_year = int(node.text) + 1    node.text = str(new_year)    # 设置属性    node.set('name', 'alex')    node.set('age', '18')    # 删除属性    del node.attrib['name']############ 保存文件 ############tree.write("newnew.xml", encoding='utf-8')

  删除节点

from xml.etree import ElementTree as ET############ 解析字符串方式打开 ############# 打开文件,读取XML内容str_xml = open('xo.xml', 'r').read()# 将字符串解析成xml特殊对象,root代指xml文件的根节点root = ET.XML(str_xml)############ 操作 ############# 顶层标签print(root.tag)# 遍历data下的所有country节点for country in root.findall('country'):    # 获取每一个country节点下rank节点的内容    rank = int(country.find('rank').text)    if rank > 50:        # 删除指定country节点        root.remove(country)############ 保存文件 ############tree = ET.ElementTree(root)tree.write("newnew.xml", encoding='utf-8')############ 解析文件方式 ############# 直接解析xml文件tree = ET.parse("xo.xml")# 获取xml文件的根节点root = tree.getroot()############ 操作 ############# 顶层标签print(root.tag)# 遍历data下的所有country节点for country in root.findall('country'):    # 获取每一个country节点下rank节点的内容    rank = int(country.find('rank').text)    if rank > 50:        # 删除指定country节点        root.remove(country)############ 保存文件 ############tree.write("newnew.xml", encoding='utf-8')

  xml文档创建方式一

复制代码from xml.etree import ElementTree as ET# 创建根节点root = ET.Element("famliy")# 创建节点大儿子son1 = ET.Element('son', {'name': '儿1'})# 创建小儿子son2 = ET.Element('son', {"name": '儿2'})# 在大儿子中创建两个孙子grandson1 = ET.Element('grandson', {'name': '儿11'})grandson2 = ET.Element('grandson', {'name': '儿12'})son1.append(grandson1)son1.append(grandson2)# 把儿子添加到根节点中root.append(son1)root.append(son1)tree = ET.ElementTree(root)tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)复制代码

  创建方式二

from xml.etree import ElementTree as ET# 创建根节点root = ET.Element("famliy")# 创建大儿子# son1 = ET.Element('son', {'name': '儿1'})son1 = root.makeelement('son', {'name': '儿1'})# 创建小儿子# son2 = ET.Element('son', {"name": '儿2'})son2 = root.makeelement('son', {"name": '儿2'})# 在大儿子中创建两个孙子# grandson1 = ET.Element('grandson', {'name': '儿11'})grandson1 = son1.makeelement('grandson', {'name': '儿11'})# grandson2 = ET.Element('grandson', {'name': '儿12'})grandson2 = son1.makeelement('grandson', {'name': '儿12'})son1.append(grandson1)son1.append(grandson2)# 把儿子添加到根节点中root.append(son1)root.append(son1)tree = ET.ElementTree(root)tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)

  由于原生保存的XML时默认无缩进,如果想要设置缩进的话, 需要修改保存方式:

from xml.etree import ElementTree as ETfrom xml.dom import minidomdef prettify(elem):    """将节点转换成字符串,并添加缩进。    """    rough_string = ET.tostring(elem, 'utf-8')    reparsed = minidom.parseString(rough_string)    return reparsed.toprettyxml(indent="\t")# 创建根节点root = ET.Element("famliy")# 创建大儿子# son1 = ET.Element('son', {'name': '儿1'})son1 = root.makeelement('son', {'name': '儿1'})# 创建小儿子# son2 = ET.Element('son', {"name": '儿2'})son2 = root.makeelement('son', {"name": '儿2'})# 在大儿子中创建两个孙子# grandson1 = ET.Element('grandson', {'name': '儿11'})grandson1 = son1.makeelement('grandson', {'name': '儿11'})# grandson2 = ET.Element('grandson', {'name': '儿12'})grandson2 = son1.makeelement('grandson', {'name': '儿12'})son1.append(grandson1)son1.append(grandson2)# 把儿子添加到根节点中root.append(son1)root.append(son1)raw_str = prettify(root)f = open("xxxoo.xml",'w',encoding='utf-8')f.write(raw_str)f.close()

  关于命名空间详细介绍,

configparser模块

configparser用来处理特定格式的文件,实质上就是用open打开并操作文件,具体格式大概是这样的

[section1] # 节点k1 = v1    # 值k2:v2       # 值 [section2] # 节点k1 = v1    # 值

  获取所有节点的方法

import configparser config = configparser.ConfigParser()config.read('xxxooo', encoding='utf-8')ret = config.sections()print(ret)

  获取指定节点下所有的键值对

import configparser config = configparser.ConfigParser()config.read('xxxooo', encoding='utf-8')ret = config.items('section1')print(ret)

  获取指定节点下所有的建

 

import configparser config = configparser.ConfigParser()config.read('xxxooo', encoding='utf-8')ret = config.options('section1')print(ret)

  获取指定节点下指定key的值

import configparser config = configparser.ConfigParser()config.read('xxxooo', encoding='utf-8')  v = config.get('section1', 'k1')# v = config.getint('section1', 'k1')# v = config.getfloat('section1', 'k1')# v = config.getboolean('section1', 'k1')

  检查、删除、添加节点

import configparser config = configparser.ConfigParser()config.read('xxxooo', encoding='utf-8')  # 检查has_sec = config.has_section('section1')print(has_sec) # 添加节点config.add_section("SEC_1")config.write(open('xxxooo', 'w')) # 删除节点config.remove_section("SEC_1")config.write(open('xxxooo', 'w'))

  检查、删除、设置指定组内的键值对

import configparser config = configparser.ConfigParser()config.read('xxxooo', encoding='utf-8') # 检查has_opt = config.has_option('section1', 'k1')print(has_opt) # 删除config.remove_option('section1', 'k1')config.write(open('xxxooo', 'w')) # 设置config.set('section1', 'k10', "123")config.write(open('xxxooo', 'w'))

  logging模块

用于便于记载日志且线程安全的模块,

单文件日志

import logging  logging.basicConfig(filename='log.log',                    format='%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',                    datefmt='%Y-%m-%d %H:%M:%S %p',                    level=10)  logging.debug('debug')logging.info('info')logging.warning('warning')logging.error('error')logging.critical('critical')logging.log(10,'log')

  日志写的等级,只有当前文件写的等级大于日志设置的记录的等级才会被记录,就是上边代码中的level参数

CRITICAL = 50FATAL = CRITICALERROR = 40WARNING = 30WARN = WARNINGINFO = 20DEBUG = 10NOTSET = 0

  对于上述记录日志的功能,只能将日志记录在单文件中,如果想要设置多个日志文件,logging.basicConfig将无法完成,需要自定义文件和日志操作对象。多文件操作方法如下,当使用【logger1】写日志时,会将相应的内容写入 l1_1.log 和 l1_2.log 文件中

# 定义文件file_1_1 = logging.FileHandler('l1_1.log', 'a')fmt = logging.Formatter(fmt="%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s")file_1_1.setFormatter(fmt)file_1_2 = logging.FileHandler('l1_2.log', 'a')fmt = logging.Formatter()file_1_2.setFormatter(fmt)# 定义日志logger1 = logging.Logger('s1', level=logging.ERROR)logger1.addHandler(file_1_1)logger1.addHandler(file_1_2)# 写日志logger1.critical('1111')

  subprocess模块,用于在py代码中执行系统的shell命令

call 执行命令,返回状态码

ret = subprocess.call(["ls", "-l"], shell=False)ret = subprocess.call("ls -l", shell=True)

check_call,执行命令,如果执行状态码是 0 ,则返回0,否则抛异常

subprocess.check_call(["ls", "-l"])subprocess.check_call("exit 1", shell=True)

 check_output执行命令,如果状态码是 0 ,则返回执行结果,否则抛异常

subprocess.check_output(["echo", "Hello World!"])subprocess.check_output("exit 1", shell=True)

  subprocess.popen(...)用于执行比较复杂的系统命令,具体参数如下

args:shell命令,可以是字符串或者序列类型(如:list,元组)bufsize:指定缓冲。0 无缓冲,1 行缓冲,其他 缓冲区大小,负值 系统缓冲stdin, stdout, stderr:分别表示程序的标准输入、输出、错误句柄preexec_fn:只在Unix平台下有效,用于指定一个可执行对象(callable object),它将在子进程运行之前被调用close_sfs:在windows平台下,如果close_fds被设置为True,则新创建的子进程将不会继承父进程的输入、输出、错误管道。所以不能将close_fds设置为True同时重定向子进程的标准输入、输出与错误(stdin, stdout, stderr)。shell:同上cwd:用于设置子进程的当前目录env:用于指定子进程的环境变量。如果env = None,子进程的环境变量将从父进程中继承。universal_newlines:不同系统的换行符不同,True -> 同意使用 \nstartupinfo与createionflags只在windows下有效将被传递给底层的CreateProcess()函数,用于设置子进程的一些属性,如:主窗口的外观,进程的优先级等等 #示例:import subprocessret1 = subprocess.Popen(["mkdir","t1"])ret2 = subprocess.Popen("mkdir t2", shell=True)

  终端的输入一般分为两种情况,比如ipconfig会立即执行,再或者python,会进入python解释器等待用户输入,以下为几个例子

import subprocessobj = subprocess.Popen("mkdir t3", shell=True, cwd='/home/dev',)#示例二import subprocessobj = subprocess.Popen(["python"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)obj.stdin.write("print(1)\n")obj.stdin.write("print(2)")obj.stdin.close()cmd_out = obj.stdout.read()obj.stdout.close()cmd_error = obj.stderr.read()obj.stderr.close()print(cmd_out)print(cmd_error)#三import subprocessobj = subprocess.Popen(["python"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)obj.stdin.write("print(1)\n")obj.stdin.write("print(2)")out_error_list = obj.communicate()print(out_error_list)#四import subprocessobj = subprocess.Popen(["python"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)out_error_list = obj.communicate('print("hello")')print(out_error_list)

  shutil模块,高级的文件、文件夹、压缩包 处理模块,shutil.copyfileobj(fsrc, fdst[, length])

具体copy用法如下

#将文件内容拷贝到另一个文件中import shutil shutil.copyfileobj(open('old.xml','r'), open('new.xml', 'w')#文件的copyshutil.copyfile('f1.log', 'f2.log')#权限的copy,内容,组,用户都不变shutil.copymode('f1.log', 'f2.log')#仅拷贝状态的信息,包括:mode bits, atime, mtime, flags	shutil.copystat('f1.log', 'f2.log')#copy文件和权限import shutil shutil.copy('f1.log', 'f2.log')#copy文件和状态信息import shutil shutil.copy2('f1.log', 'f2.log')#递归copy文件夹import shutil shutil.copytree('folder1', 'folder2', ignore=shutil.ignore_patterns('*.pyc', 'tmp*'))#递归删除文件夹import shutil shutil.rmtree('folder1')#递归移动,类似mv,其实就是重命名import shutil shutil.move('folder1', 'folder3')

  shutil的压缩与解压缩功能为创建压缩包并返回文件路径,例如:zip、tar,具体参数解释如下

base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,如:www                        =>保存至当前路径如:/Users/wupeiqi/www =>保存至/Users/wupeiqi/format:	压缩包种类,“zip”, “tar”, “bztar”,“gztar”root_dir:	要压缩的文件夹路径(默认当前目录)owner:	用户,默认当前用户group:	组,默认当前组logger:	用于记录日志,通常是logging.Logger对象

  下边我们写一个例子

#将 /Users/wupeiqi/Downloads/test 下的文件打包放置当前程序目录import shutilret = shutil.make_archive("wwwwwwwwww", 'gztar', root_dir='/Users/wupeiqi/Downloads/test')    #将 /Users/wupeiqi/Downloads/test 下的文件打包放置 /Users/wupeiqi/目录import shutilret = shutil.make_archive("/Users/wupeiqi/wwwwwwwwww", 'gztar', root_dir='/Users/wupeiqi/Downloads/test')

  shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:

#zipfileimport zipfile# 压缩z = zipfile.ZipFile('laxi.zip', 'w')z.write('a.log')z.write('data.data')z.close()# 解压z = zipfile.ZipFile('laxi.zip', 'r')z.extractall()z.close()#tarfileimport tarfile# 压缩tar = tarfile.open('your.tar','w')tar.add('/Users/wupeiqi/PycharmProjects/bbs2.log', arcname='bbs2.log')tar.add('/Users/wupeiqi/PycharmProjects/cmdb.log', arcname='cmdb.log')tar.close()# 解压tar = tarfile.open('your.tar','r')tar.extractall()  # 可设置解压地址tar.close()

  

转载于:https://www.cnblogs.com/kading/p/5620602.html

你可能感兴趣的文章
hdu4374One hundred layer (DP+单调队列)
查看>>
类间关系总结
查看>>
properties配置文件读写,追加
查看>>
Linux环境下MySql安装和常见问题的解决
查看>>
lrzsz——一款好用的文件互传工具
查看>>
ZPL语言完成条形码的打印
查看>>
这20件事千万不要对自己做!
查看>>
Linux环境下Redis安装和常见问题的解决
查看>>
HashPump用法
查看>>
cuda基础
查看>>
Vue安装准备工作
查看>>
.NET 母版页 讲解
查看>>
最大权闭合子图
查看>>
oracle 创建暂时表
查看>>
201421410014蒋佳奇
查看>>
【03月04日】A股滚动市盈率PE历史新低排名
查看>>
Xcode5和ObjC新特性
查看>>
jvm slot复用
查看>>
高并发系统数据库设计
查看>>
LibSVM for Python 使用
查看>>